An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid
نویسنده
چکیده
The thermal performances of a minichannel heat sink are experimentally investigated for cooling of electronics using nanofluid coolant instead of pure water. The Al2O3–H2O nanofluid including the volume fraction ranging from 0.10 to 0.25 vol.% was used as a coolant. The effects of different flow rates of the coolant on the overall thermal performances are also investigated. The flow rate was ranged from 0.50 to 1.25 L/min as well as the Reynolds number from 395 to 989. The coolant was passed through a custom made copper minichannel heat sink consisting of the channel height of 0.8 mm and the channel width of 0.5 mm. The experimental results showed the higher improvement of the thermal performances using nanofluid instead of pure distilled water. The heat transfer coefficient was found to be enhanced up to 18% successfully. The nanofluid significantly lowered the heat sink base temperature (about 2.7 C) while it also showed 15.72% less thermal resistance at 0.25 vol.% and higher Reynolds number compared to the distilled water. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Experimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink
Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...
متن کاملAn investigation of heat and mass transfer enhancement of air dehumidification with addition of γ-Al2O3 nano-particles to liquid desiccant
This study introduces an experimental and theoretical investigation of the performance of a proposed air dehumidification system using a nanofluid of γ-alumina nano-particles in LiBr/H2O as a desiccant. Comparative experiments organized using a central composite design were carried out to evaluate the effects of six numerical factors (air velocity, desiccant flow rate, air humidity ratio, desic...
متن کاملExperimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids
This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...
متن کاملHeat Transfer Enhancement of Al2O3–H2O Nanofluid Free Convection in Two-Phase Flow with Internal Heat Generation Using Two Dimensional Lattice Boltzmann Method
A two-phase lattice Boltzmann model considering the interaction forces of nanofluid has been developed in this paper. It is applied to investigate the flow and natural convection heat transfer of Al2O3–H2O nanofluid in an enclosure containing internal heat generation. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann metho...
متن کاملExperimental Investigation on Heat Transfer of Silver-Oil Nanofluid in Concentric Annular Tube
In order to examine the laminar convective heat transfer of nanofluid, experiments carried out using silver-oil nanofluid in a concentric annulus with outer constant heat flux as boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique and observed no nanoparticles agglomeration during nanofluid preparation process and carried out experiments. The average size...
متن کامل